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Spin-Orbit Coupling in the Band Structure of Magnesium and other 
Hexagonal-Close-Packed Metals* 
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A calculation of the spin-orbit splitting of the energy levels at the corner of the Brillouin zone in Mg is 
performed using a six orthogonalized-plane-wave approximation. The parameters of the wave functions 
were taken from an existing calculation by one of the authors. The corresponding splittings for Be, Zn, 
Cd, and Tl are estimated from spectroscopic values of the atomic splittings. The changes in the topological 
properties of the Fermi surface caused by the spin-orbit splitting are discussed as well as the implications of 
these changes for various physical properties. 

I. INTRODUCTION 

AS has been previously pointed out by the authors,1 

spin-orbit effects modify in an essential way the 
energy-band picture and the electronic structure of the 
hexagonal-close-packed (hep) metals. In particular, the 
double zone usually employed for these metals must be 
replaced by the conventional single-zone scheme. The 
effects are of essential importance in the AHL plane of 
the Brillouin zone (Fig. 1) where the degeneracy of the 
energy levels is lifted everywhere except along the AL 
lines. Here we give a complete account of a calculation 
for Mg of the splittings at H? where they reach their 
maximum values. We have used a representation of the 
wave functions in terms of six orthogonalized plane 
waves (OPW), twelve considering spin. The values of 
the orthogonalization coefficients and the potential have 
been taken from an existing band structure calculation.3 

In Sec. II we discuss the symmetry of the wave func
tions and their group-theoretical properties. In Sec. I l l 
the actual calculation of the splittings in Mg is described. 
In Sec. IV we discuss the nature of the results and esti
mate the corresponding values for Be, Zn, Cd, and Tl. 

II. SYMMETRY CONSIDERATIONS 

We define the direct lattice of a hexagonal structure 
by the vectors th t2, t3, (t4), where ti, t2, and t3 form a 

FIG. 1. The Brillouin 
zone in the hep struc
tures, showing points 
and lines of symmetry 
in the hexagonal face. 

* Supported in part by the Office of Naval Research. 
1 M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 5, 544 

(1960). 
2 We must point out that the numerical values given in the last 

column of Table I in reference 1 as well as the discussion in the 
paragraph preceding it are in error. The correct values are given 
in the present paper. 

3 L. M. Falicov, Phil. Trans. Roy. Soc. (London) A255, 55 
(1962), and thesis submitted to the University of Cambridge, 
England, 1960 (unpublished). 

right-handed system, the angles between U and t2 or 
t3 being 90°, the angle between t2 and t3, 120° and 

t 4 = - t 2 - t 3 , (1) 

\ti\=c, | t2 | = |t3 | = | t 4 | =a . (2) 

The reciprocal lattice is then defined by the vectors 
GiG2G3(G4), where 

2xGjXG* 

'"G.XG.G; 

G4= —G2+G3. 

i, j , k= 1, 2, 3 in cyclical order, (3) 

(4) 

The position of the two atoms in the unit cell of the 
hep structure are at the origin and at T, respectively, 
where 

^iM-^+ft,. (5) 
For convenience we also define an orthogonal system 
of coordinates such that the x axis is parallel to t2, the 
y axis parallel to G3, and the z axis parallel to h and Gi. 

To determine the energy levels at the various points 
of the Brillouin zone, we expand the wave functions of 
an electron in a series of OPW's,3-5 defined as 

|^k.)=^k[fi-1/2|exp(A-r))-2: 5ki.| WOXh,, (6) 

where fi is the volume of the crystal; t=ls, 2s, 2px, 
2py, 2pz, • • •, etc., indicates the core-electron orbitals; 
s==l, 2, denotes the atoms at the origin and at the 
position x within the unit cell, respectively; <£k*s(r) are 
the core-electron tight-binding wave functions; 

Bkts — =&*»[**** (r) exp(ik-r)d3r 

are the orthogonalization coefficients; 

^k=( i -E . | J5k ( . |
2 ) - 1 / 2 

(7) 

(8) 

is the normalization coefficient; and *?<, is a spin function. 

4V. Heine, Proc. Roy. Soc. (London) A240, 340, 361 (1957). 
6 T. O. Woodruff, Solid State Physics, edited by F. Seitz and D. 

Turnbull (Academic Press Inc., New York, 1957), Vol. 4, p. 367. 
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The degeneracies of the levels are given by the dimen
sions of the irreducible representations of the small 
group6 of k plus the additional degeneracies introduced 
by time reversal symmetry or accidental degeneracies.7 

In what follows, when we refer to the degeneracy of a 
state we include the spin degeneracy, even in the 
"without-spin" case. 

When spin-orbit coupling is neglected, the Hamil-
tonian for one electron is 

3Co=-(ft2/2m)VH-F(r), (9) 

and the representations to be considered are those of 
the so-called "single" group.8 In particular, we note 
that for any point of the hexagonal face of the Brillouin 
zone all the levels are fourfold degenerate9 and the bands 
always stick together. This, of course, includes the 
general point B of the face, whose irreducible representa
tions are given in Table I.10 The compatibility relations 
between the relevant representations are given in Fig. 
2(a). 

When spin-dependent terms are included in the 
Hamiltonian, 

3Ci = 3Co+3Cspinj 

5CsPin= (V4m2c2)(vFXp-or), 

new irreducible representations must be considered. 
These are the "double" group representations given by 
Elliott.11 In this case we note that only at A, R, and L 
are the energy levels fourfold degenerate. At the other 
symmetry points H and S as well as at a general point 
B, the fourfold degeneracy of the "without spin" case 
has been lifted and all the levels are now only twofold 
degenerate. The new compatibility relations are given 
in Fig. 2(b). It is, therefore, evident that the spin-orbit 
effects are of fundamental importance in determining 
the topological properties of the energy surfaces. 

We now focus our attention on the point Hy where, 
because of the previous symmetry arguments, the 

TABLE I. Character table of the representations of B.& 

Single group 
Bi Bi 

Double group 
J33 B\ 

(e|0) 
(e|0) 
<p|0) 
(p|0) 

1 
1 
1 
1 

1 
1 

- 1 
- 1 

1 
- 1 

i 
—i 

1 
- 1 
—i 

i 

* Because of time reversal: B\ and B% are degenerate; B% and Bi always 
occur twice and hence are doubly degenerate. 

Characters of elements of the kind (a|t) are obtained by multiplying 
the character of (a|0) by exp(— ikt). 

6 L. P. Bouckaert, R. Smoluchowski and E. Wigner, Phys. Rev. 
50, 58 (1936). 

7 C. Herring, Phys. Rev. 52, 361, 365 (1937). 
8 C. Herring, J. Franklin Inst. 233, 525 (1942). 
9 The only exception is the representation A 3, which is eightfold 

degenerate. 
10 These representations can be trivially derived from reference 

8. They are included here for the sake of completeness. 
11 R. J. Elliott, Phys. Rev. 96, 280 (1954). 

(a) 

FIG. 2. The compati
bility relations between 
points in the hexagonal 
face of the Brillouin 
zone (a) without spin, 
(b) with spin. Single 
lines represent double 
levels and double lines 
indicate fourfold levels. 

Cb)-

Sk— 

I 

/ 
IS3+S4I 

\ 

.|R | + R3| = |L , ] 

^7 
= [B, + B2|==|S'1| 

/ 
H,,H2 , H3 | 

H8,H5,+ h7| 

S 

1 \ 
! ls'3+S4l 

1 \ \ 

1 /r 
:IB4+B4I: / 

l H 9. 

! \ ' 
IVS'sl 

•VH6J 

splittings may be expected to reach their maximum 
value. We consider the twelve OPW's defined by the 
six k vectors 

k2==ki— G2, 

TTl" <»> 
k 4 =k i—b! , 

k5=k2— Gi, 

k 6 =k 3 -Gi , 
and both directions of spin. We shall denote these 
OPW's by I If), |U), |2f), |2|) , etc. In the "without 
spin" case, they transform according to 2Hi+2H2-\-2H^. 
The coefficients of the linear combinations transforming 
according to one given representation can be obtained 
by the standard projection techniques using the charac
ter tables of the representation.8 These coefficients are 
given in Table II, where for the sake of clarity we have 
omitted the spin indices and the normalization factor 

TABLE II . Coefficients of the symmetrized linear combinations 
of OPW's for the single group at H* 

ID 
|2> 
|3> 
|4> 
|5> 
|6> 

Ion 1 
Ion 2 

Hi 
\a) \b) 

1 1 
vP- tip 
w w 
1 - 1 
w2 —vp 
w —w 

px+ipv 

px — ipy 

H2 

\c) 

1 
w 
up 

- 1 
— w 
— isP 

s 

\d) 

s 

\e) 

1 
w 
uP 
1 
w 
lip 

px—ipy 
Pz 

Hz 

\f) 

- 1 
— 1 
- 1 

Pz 
px+ipv 

• w « - § + # v 3 . 
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TABLE III. Coefficients of the symmetrized linear combinations of OPW's for the double group at B.& 

Single group 
Double group 

ut> 
|2f> 
|3f> 
|4f> 
|5f> 
|6f) 

IH> 
|24> 
|3*> 
|4*> 
|5 |> 

\H) 

l 
V? 

w 
1 
W* 

w 

0 
0 
0 
0 
0 
0 

Hi 

H8 

0 
0 
0 
0 
0 
0 

1 
w2 

w 
- 1 
—w2 

w 

H, 

1 
u? 
w 

- 1 
— V? 

-IV 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

1 
w8 

w 
1 
w2 

w 

HA 

1 
w 
lip-

_ 1 
—w 
— U? 

—i 
—i 
—i 
—i 
—i 
—i 

H2 

H6 

1 
w 
it? 

- 1 
— w 
—11& 

I 

I 

I 

t 

I 

i 

0 
0 
0 
0 
0 
0 

Ih 

0 
0 
0 
0 
0 
0 

1 
w 
It? 

- 1 
— w 
-w2 

H& 

1 
w 
w2 

1 
w 
u? 

—i 
— i 
— i 

Hs 

Ih 

1 
w 
u? 
1 
w 
IV2 

~l 

— I 

—I 

t 

I 

i 

H9 

— 1 
__1 
- 1 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

1 
w 
w1 

1 
w 
w2 

6"~1/2. We have designated these linear combinations 
k t ) , |a*>, | i f ) , | H ) , etc. 

If we expand these functions in a power series in r 
about r = 0 and r = * , we can determine the angular-
momentum character of each of them with respect to 
the two ion sites of the unit cell in the lattice. We have 
listed the s- and ^-like contribution at the end of 
Table II . 

The inclusion of the spin-orbit term in the Hamil-
tonian makes the set of our twelve OPW's transform 

according to # 4 + # 5 + J a p
6 + # 7 + 2 # 8 + 2 £ r 9 , w h e r e i n 

fact the initial representations £Ti, Hz, and Hz split in 
the following fashion: 

tfi-

H 2 " 

>Ha+Hh 

•Ht+H6+Hs, 

# 5 + # 7 + # 9 . 

(12) 

The coefficients of the corresponding linear combina
tions transforming according to each irreducible repre
sentation are given in Table I I I . 

Since the pairs H4—HQ and H5—H7 are degenerate 
because of time reversal, it is possible to take an arbi
trary linear combination of their functions. By doing 
this we arrive at the simple result for the new linear 
combinations 

Ih+Hf. 
Hs+Hr. 
Hs~i: 

i /s_2: 

# 9 _ i : 

# 9 - 3 : 

|ct>, 

let), 
kt), 
\df), 

l*t>, 
l/t), 

\dl), 

\fl), 
\U), 
\ci), 

l<4>, 
\el), 

where the functions in the first column are degenerate 
with the corresponding functions in the second. We see 
now that we have been able to separate the two spin 
systems and consequently deal only with one of them, 
say the spin-up system. This means that the most 

important contributions to the spin-orbit splitting will 
come from those orbital parts with pxdzipv character, 
i.e., we expect splittings of the order of the full atomic 
value for H\ and Hz and much smaller values for # 2 . 

Since the spin splitting of the 3s3pzPj levels in 
atomic magnesium12 is 5X10~3 eV and the computed3 

energy gaps Z72—#1, Hi—Hz for a twelve-OPW basis 
set (without spin) are 3X10 - 1 and 2.6 eV, respectively, 
we can compute the crystal spin-splitting by means of 
first-order perturbation theory, i.e., 

AF 1 =(a t |3C 8 p i n | a t ) - (6 t |5C s p in |H) , (13) 

AH2=(ct\W&pin\cf)-(dt\Wapin\dt), (14) 

A F 3 = ( e t | X s p i n ^ t ) - < / t | 5 C s P i n | / t ) . (15) 

This argument is valid only for light elements, namely, 
Be, Mg, and probably Zn where the energy gaps are 
much bigger than the atomic spin splittings. For the 
heavier elements, Cd and Tl, where both energies are 
of the same order of magnitude, the mixing of Hi and 
H2 and Hi and Hz through their common spin represen
tations Hs and #9 must be taken into account and two 
two-by-two secular equations must be solved. However, 
estimates of the splittings from their atomic values can 
be made although they must be considered only an 
order of magnitude approximation. 

III. CALCULATION OF THE SPLITTINGS FOR Mg 

To compute (13), (14), and (15) we rewrite 5Cspin(10) 
using atomic units ( w = & = l ) and rydbergs (Ry) for 
the energies 

where 
-sPln-(l/4<;2)R-<F, 

and V is expressed in Ry. 

(16) 

(17) 

U Charlotte E. Moore, Atomic Energy Levels, National Bureau 
of Standards Circular No. 467 (U. S. Government Printing Office, 
Washington, D. C, 1949). 
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TABLE IV. Coefficients of the OPW's, B„f8.
a 

1 
U 2s 

1 
2px 

1 
2py 2pz 

1 2 

1 

2 

3 

4 

5 

6 

h 
h 
h 
bi 

h 
bi 

ib\ 
iu?bi 
iwbi 

—ib\ 
-vuP-bi 
—iwb\ 

b* 

b2 

h 
h 

h 

h 

ibi 
iisfibi 
iwbi 

-ib2 

—iitPbi 

—iwbi 

h 

~\h 

-ih 
h 

-ih 
~\bz 

ibz 

—iiw2^ 

—iiwfa 
—ibz 

%iw*bz 
\iwb% 

0 

- i v % 
htfbt 
0 

-i^h 
h%h 

0 

-\mw*bz 
ii^wbz 

0 

H>/3utbt 

—ii&wfa 

bi ibi 

bi iuPbi 

bi iwbi 

- bi ibi 

-bi iusbi 

-bi iwbi 

» 6i =0.02349, 62 = -0.1746, H =0.09512, bi =0.04394, An =1.045, w = - § -H*V3. 

Kn,u=tt-1/2{exv(ikn-t)\R2\$ts(t)}, 

Qts,t>s> = (<f>t8(t)\R2\<S>t>A*)\ 

Since only spin-up states are involved in the calcula
tion, the only term to be considered is 

3C*= (l/4c2)Rz<rZy 

fdV d dV d \ (18) and the main contribution must come from (24). 
Integrating by parts, we obtain for (22) R2 

fdV d 6V d\ 

\ dx dy dy dx/ 

because the other two terms give zero diagonal matrix 
elements. 

We give now a detailed account of the calculation of 
one of the matrix elements, i.e., 

Ia=(l/W)(a\R,\a). (19) 

From the considerations of the previous section 

|a>=ECfl»|») 
n - l 

=J a [0 - 1 ' 2 L C..|expA.T>-Z2>.i.|*«.(r)>], (20) 
n=l ts 

where Can are the coefficients given in Table II, 

where 

• / 
tU(G)=0-1 / V(T) exp(?G-r)JV 

(23) 

(24) 

(25) 

(26) 

is a Fourier coefficient of the potential for the reciprocal 
lattice vector G, available from reference 3. 

In computing (23) and (24) we assume that the lat
tice potential V(r) is expressed as a sum of spherically 
symmetric potentials U(p) centered about each atom 

V(?)= E [ ^ ( I r - R i D + t / d t - R i - r D l (27) 
Ri lattice 

vectors 

and that the overlapping of neighboring potentials and 
core orbitals can be neglected. The last assumption is 

(21) justified by the results of reference 3. If we now call 
g the vector going to any point in the crystal from the 
nearest ion site, we can replace 

and A a is the new normalization factor. 
It is worth noticing that the Bloch tight-binding V(r) —+ U(p), 

orbitals are the same for the six k vectors under con-

n=»l 

sideration. The coefficients An and Bnt8> and Ai and 
Dits are given in Tables IV and V, respectively. It is 
evident now that the only matrix elements to be com
puted are of three different kinds: 

vv-

Rz 

dp p 

idU 

(28) 

Jmn = O-^exp (ikm • r) | Rz | exp (ikn • r)), (22) 

T A B L E V. Coefficients of the symmetrized combinations of OPW's , Du». 

IdU d 

p dp p dp dip 

Is 2s 2px 2py 2pz 
1 2 Ai 

a 
b 
c 
d 
e 

f 

0 

0 

0 

61/2&x 

0 

0 

0 

0 

l&*bi 
0 

0 

0 

0 

0 

0 

61/262 

0 

0 

0 

0 

z61/262 

0 

0 

0 

(i)1/2&3 
0 

0 

0 

H)inbz 
0 

0 

mxlsbi 
0 

0 

0 

i{Wl2b3 

mii%b* 
0 

0 

0 

-mmbz 
0 

0 

d)inbz 
0 

0 

0 

- ( i ) l / 2 * s 

0 

0 

0 

0 

0 

&*bA 

0 

0 

0 

0 

i6ll2bi 
0 

1.014 

1.014 

1.109 

1.109 
1.020 

1.020 
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By expressing the potential U(j>) in the usual way in and p-xUf as computed numerically are given in Table 
atomic theory, VI. Near the origin (30) diverges as p~3. 

U(p)=-2p~1Z(p)J (29) Finally, if the core orbitals are expressed in the form 
we obtain , . 

p~HU/dp=2p~zZ-2p~HZ/dp. (30) *t(Q) = P lPt(p)Yt(B^), (31) 

Values of 2Z as obtained from reference 3 and of 2Z' where the F's are spherical harmonics, we obtain 

3i 1 1 dU/$inknr 

4cH2roz)l!2kT?Jo 

31 1 &„ 

Pp(ry—\-
r dr\ knr 

1 dU /sink nr 

-cosknr \dr, 
lcz {2r0

6)llz 

knx f°° 1 dU (SmknT \ 
i r n > y l =exp( ik n T)^ n > t / 2= / A>M ( cos£nr \dr, 

4c2 (2r0
8)1/ 

Ac2 Jo r dr 

ldU 

(32) 

(33) 

(34) 

where p, xy and y denote 2p, 2px, and 2pyy respectively, 
and r0 is the radius of the atomic sphere. All other 
matrix elements are zero in this approximation. The 
integrals appearing in (32), (33), and (34) have been 
computed numerically using the values of PP(r) from 
reference 3. When all these values are collected and 
inserted into (19), the values shown in Table VII result 
for the shifting of the energies and the total spin-orbit 
splittings. 

I t is worth noticing that according to the discussion 
of the previous section, the splittings at Hi and Hz are 
of the order 5X10~3 eV and the corresponding value is 
three orders of magnitude smaller for U% I t must be 
pointed out, however, that the smallness of the Hi 
splitting is due to the exact cancellation of the ^-like 
contributions to the wave functions \c) and \d). This 
cancellation only occurs precisely at the symmetry 
point H\ in the neighborhood of H2 on the AHL plane, 
the wave functions must have some p character which 
will produce again a spin-orbit splitting of the order of 

TABLE VI. Values of the potential and its derivative. 

2Z 2Z' lU'{P) 

0.00 
0.005 
0.01 
0.02 
0.04 
0.10 
0.20 
0.30 
0.40 
0.60 
0.80 
1.00 
1.20 
1.60 
2.00 
2.60 
3.40 
4.20 
5.00 

24.000 
23.681 
23.364 
22.746 
21.570 
18.723 
14.017 
12.096 
10.139 
7.654 
7.389 
0.876 
2.086 
1.686 
1.226 
0.713 
0.218 
0.005 
0.000 

-63.78 
-63.58 
-62.82 
-61.12 
-57.06 
-39.26 
-29.71 
-21.86 
-17.30 

-7.62 
-1.44 

+ 16.85 
+0.14 
-1.26 
-0.95 
-0.76 
-0.40 
-0.12 

0.00 

1.92X108 

2.40X107 

3.00X106 

3.73X105 

2.27X104 

2.50X103 

6.91X102 

2.67X102 

5.72X10 
1.67X10 

-1.60X10 
1.11 
9.04X10-"1 

3.91 X10-1 

1.53 X10"1 

4.01 X10~2 

6.87X10"3 

0.00 

the atomic value. Therefore, while the values of the 
splitting are maxima at H\ and # 3 , #2 is a point of sharp 
local minimum. 

IV. DISCUSSION 

The main effect of the spin-orbit coupling is the re
moval of the degeneracy of the band for most points 
of the hexagonal face of the Brillouin zone. This affects 
in various ways the physical properties of the hep 
metals. 

No fundamental change is required for the existing 
theories of alloys. The overlap of the electron distribu
tion into the second and fourth zone generally starts 
at the points A and L, respectively, where the splittings 
vanish. 

On the other hand, all those properties which depend 
on the local or topological features of the Fermi surface, 
e.g., the transport phenomena in the presence of a mag
netic field, are essentially changed. Since the bands no 
longer stick together at an arbitrary point of the hex
agonal face, the double-zone scheme ordinarily used in 
the representation of the energy surfaces ceases to be 
valid, and new kinds of connectivities appear when the 
energy surfaces are plotted in the usual single-zone 
repeated zone scheme. For instance, the piece of the 

TABLE VII. Values of the energies for the various levels. 

Energy 
Symmetry without Spin-up 

without spin Symmetry wave 
spin (Ry) with spin function 

Energy 
shift U 

(Ry) 

Spin 
splitting 

(eV) 

Hi 

m 

Hz 

0.708 

0.686 

0.898 

Ih 
# 9 

HA+H* 

Ih 

Hb+H7 

H9 

\a) 

\c) 
\d) 

\e) 
l/> 

2.08X10-4 

-2.08X10-4 

2.76X10-7 

-2.76X10"7 

-2.10X10-4 

2.10X10-4 

5.65X10"3 

7.50X10-6 

5.72X10-3 
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(a) (b) 

FIG. 3. The change in the connectivity properties of a divalent 
hep metal due to spin-orbit coupling. Diagram (a) shows the 
"without spin" case and (b) the surface in the second band when 
spin-orbit coupling is taken into account. 

Fermi surface corresponding to the holes in the second 
band in Mg,3 Zn,13'14 and Cd,13 which without spin-orbit 
coupling may sustain open orbits15 with general direc
tions only perpendicular to the c axis [Fig. 3(a)], with 
spin-orbit coupling changes its topology [Fig. 3(b)] so 
as to permit open trajectories parallel to the c axis. 

However, because of the smallness of some of these 
gaps, magnetic breakdown effects16 must be expected 
to appear at relatively low magnetic fields, in which 
case the electron trajectory will ignore the gap, restoring 
the previous "without-spin" topology. This is certainly 
the case for Mg where relatively small fields of the order 
of 200 G must be enough to produce breakdown. 

To estimate the values of the splittings for the other 
hep metals it must be emphasized that the values at H\ 
and Hz come almost exclusively from the "atomic" 
part of the wave function, while the much smaller H2 
splitting arises from lattice effects. Therefore, the Hi 
and Hz gaps for Be, Zn, Cd, and Tl must be of the order 
of 0.05, 9.5, 28, and 129 times the corresponding values 

13 W. A. Harrison, Phys. Rev. 118, 1190 (1960). 
14 W. A. Harrison, Phys. Rev. 126, 497 (1962). 
15 L. M. Lifschitz, M. Ya. Azbel, M. I. Kaganov, Zh. Eksperim. 

i Teor. Fiz. 30, 220 (1955) [translation: Soviet Phys.—JETP 3, 
143 (1956)]; I. M. Lifschitz and V. G. Peschanskii, Zh. Eksperim. 
i Teor. Fiz. 35, 1251 (1958) [translation: Soviet Phys.—JETP 8, 
875 (1959)]. 

16 M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 7, 231 
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for Mg. These figures are obtained from the term values 
of the configurations 2s2p zPj, 4s4p zPj, SsSp zPj, and 
6s26p 2Pj of the respective atoms.12 

No good estimate of the H2 splittings can be made 
since these depend critically on the behavior of the wave 
functions and potential throughout the crystal and not 
only near the ion sites. Even for magnesium the com
puted value may be in error by orders of magnitude. 
The contribution from the plane-wave part of the wave 
function is very important here, and the assumption of 
spherical potentials around each nucleus as well as the 
truncation of the series to include only six OPW's are 
indeed bad approximations for this level. Nonetheless 
they must be in general orders of magnitude smaller 
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The existence of the spin-splittings near H has been 
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the spin degeneracy near H. The ultrasonic absorption 
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Finally, no splitting close to H has been found in 
Mg. This is due to the smallness of the gaps, because the 
relatively low fields necessary to produce magnetic 
breakdown make unlikely any experimental determina
tion in the nonbreakdown region. However, spin-orbit 
effects may be of considerable importance in the interior 
of the zone, where accidental degeneracies of the 
"without-spin" bands are removed. Theoretical16 and 
experimental19-20 evidence for such an effect has been 
found. 

We would like to acknowledge a very fruitful discus
sion with W. A. Harrison. 

17 A. S. Joseph, W. L. Gordon, J. R. Reitz, and T. G. Eck, 
Phys. Rev. Letters 7, 334 (1961). 

18 J. D. Gavenda and B. C. Deaton, Phys. Rev. Letters 8, 208 
(1962). 

19 M. G. Priestley. Thesis submitted to the University of 
Cambridge, England, 1961 (unpublished). 

20 R. W. Stark, T. G. Eck, W. L. Gordon, and F. Moazed, 
Phys. Rev. Letters 8, 360 (1962). 



(a) (b) 

FIG. 3. The change in the connectivity properties of a divalent 
hep metal due to spin-orbit coupling. Diagram (a) shows the 
"without spin" case and (b) the surface in the second band when 
spin-orbit coupling is taken into account. 


